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Abstract. The motion of metastable helium atoms travelling through a standing light wave is investigated
with a semi-classical numerical model. The results of a calculation including the velocity dependence of
the dipole force are compared with those of the commonly used approach, which assumes a conservative
dipole force. The comparison is made for two atom guiding regimes that can be used for the production of
nanostructure arrays; a low power regime, where the atoms are focused in a standing wave by the dipole
force, and a higher power regime, in which the atoms channel along the potential minima of the light
field. In the low power regime the differences between the two models are negligible and both models show
that, for lithography purposes, pattern widths of 150 nm can be achieved. In the high power channelling
regime the conservative force model, predicting 100 nm features, is shown to break down. The model that
incorporates velocity dependence, resulting in a structure size of 40 nm, remains valid, as demonstrated
by a comparison with quantum Monte-Carlo wavefunction calculations.

PACS. 02.60.Cb Numerical simulation; solution of equations – 32.80.Lg Mechanical effects of light
on atoms, molecules, and ions – 81.16.Rf Nanoscale pattern formation

1 Introduction

The dipole force in a standing-wave light field has been
used to create nanoscale patterns with beams of neutral
atoms for many years. The standing wave can act as an
array of optical lenses to focus the atoms during deposi-
tion onto a substrate, thereby creating a one-dimensional
structure. The first experiments using this technique were
performed ten years ago with sodium [1] and chromium [2]
atoms. Since then, atom lithography with aluminium [3],
cesium [4], metastable argon [5], and metastable neon [6]
has also been reported. For an overview of atom lithog-
raphy, see reference [7]. The results of a number of these
experiments have been compared with semi-classical nu-
merical calculations [8,9]. These calculations are based on
a dipole force that is derived from an optical potential to
focus the atoms in the standing light wave. This force is
conservative and does not take into account the velocity
dependence. Quantum-mechanical calculations have been
performed as well [10]. These calculations do not suffer
from this restriction. However, they are computationally
intensive and describe the atomic motion in one dimension
only.
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The purpose of this paper is to investigate in detail
the 3D atomic motion through a standing-wave light field
using a semi-classical approach with a non-conservative,
velocity dependent dipole force. The results of these sim-
ulations are compared with calculations using the conven-
tional model with a conservative dipole force. The model
presented in this paper follows the approach of Minogin
and Serimaa [11], where the dipole force is represented
in the form of a Fourier series, with coefficients that are
calculated with a continued fraction method. Previously,
a similar model was used to calculate a one-dimensional
beam profile of sodium atoms in the far field [12,13]. The
model that is presented here describes a full 3D simula-
tion of the motion of metastable helium atoms through a
standing light wave for the purpose of atom lithography
applications. Not only the usual low power regime, where
the atoms are focused in the standing light wave, is investi-
gated, but also a higher power regime. In the latter regime
the atoms channel through the standing wave, undergoing
a damped oscillation around the potential minima of the
light field. This is of special interest for lithography, as
it allows the production of nanostructures with relative
insensitivity to the exact alignment of atomic beam, sub-
strate, and light field. It is, however, also at these higher
laser powers that the potential model is expected to break
down and the inclusion of the velocity dependence of the
force is essential. Experiments in this novel regime with
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metastable helium atoms have been performed and, in a
future paper, the experimental pattern widths will be com-
pared with the calculations presented in this paper. With
metastable helium atoms, nanoscale structures can be cre-
ated in a gold film on a silicon substrate via a two-step
process [14]. First, the high internal energy of the focused
helium atoms (20 eV) in the 2 3S1 metastable state is used
to selectively damage an organic resist layer through the
standing light wave. Next, the pattern is transferred to the
underlying gold film by means of a wet etching process.

In the simulations, the light field is blue detuned from
the 2 3S1 → 2 3P2 optical transition (λ = 1083 nm) of the
helium atom. The atoms are therefore attracted to the
intensity minima of the standing light wave, which mini-
mizes spontaneous emission of photons by the atoms. The
atomic motion is calculated using only the dipole force.
The atomic momentum diffusion due to fluctuations of
the dipole force is neglected. The momentum diffusion is
caused by the variation in the number of absorbed and
emitted photons, and by the random direction of the spon-
taneously emitted photons. Furthermore, the atom is as-
sumed to remain in a steady state, i.e., transient effects of
the dipole force are neglected. In order to investigate the
effects of momentum diffusion and transient effects, some
results from Monte Carlo Wave Function (MCWF) cal-
culations similar to Lee [10] are presented as well. These
calculations include the velocity dependence of the force,
momentum diffusion, atomic diffraction as well as tran-
sient effects. However, they are one-dimensional and re-
quire significant computational resources.

In the next section, a general expression for the
dipole force is derived, and both semi-classical models are
outlined. Section 3 describes the method and the param-
eters of the numerical simulation. The results of the semi-
classical simulations are presented in Section 4, and they
are compared with the MCWF simulations. Finally, con-
cluding remarks are given in Section 5.

2 Theoretical models

2.1 Dipole force of a standing wave

The light force experienced by a two-level atom due to
the presence of a classically described light field can be
determined by calculating the change in momentum p of
the atom under influence of the Hamiltonian:

H = HA − d ·E, (1)

where HA contains the internal and kinetic energy of the
atom and d · E is the dipole interaction operator that
describes the coupling between the atomic dipole mo-
ment d and the electric field component E of the light
field. According to the Ehrenfest theorem, the quantum-
mechanical analogue of the radiation force is given by the
Heisenberg equation of motion

〈F〉 =
d 〈p〉
dt

=
i
�
〈[H,p]〉 = 〈∇(d ·E)〉 = 〈d〉 · ∇E. (2)

In the last step of equation (2) the expectation value of
the electric field operator E is replaced by the value at the
atomic centre of mass. This is legitimate in the electric
dipole approximation, where the wavelength of the light
field λ is large compared to the de Broglie wavelength
λdB = �/|p| of the atom, and spatial variations of the
electric field on the scale of the atomic wave-packet can
be neglected.

The expectation value of the electric dipole operator d
can be written in terms of the atomic density matrix ρ,
which describes the quantum-mechanical state of the two-
level atom, as

〈d〉 = Tr(ρd) = dge(ρge + ρeg)
= 2dge (u(t) cosωt − v(t) sin ωt) , (3)

where the atomic density matrix elements ρge and ρeg =
ρ∗ge are the electronic coherences between the ground state
and the excited state of the atom, ω is the frequency of
the radiation field, and u(t) and v(t) are two components
of the Bloch vector. In the rotating-wave approximation,
where non-resonant terms of the atom-light interactions
are neglected, the components of the Bloch vector can be
written as

u(t) =
1
2
(ρgeeiωt + ρege−iωt),

v(t) =
1
2i

(ρgeeiωt − ρege−iωt),

w(t) =
1
2
(ρee − ρgg), (4)

where the atomic density matrix elements ρgg and ρee are
the populations of the ground state and the excited state
of the atom, normalized to ρgg + ρee = 1. For a travel-
ling wave, the electric field component of the light field is
given by

E(r, t) = ε(r)E0(r) cos (ωt + Φ(r)), (5)

where ε(r), E0(r), and Φ(r) (= −k · r) are the polariza-
tion, amplitude and phase of the light wave respectively
at the atomic centre-of-mass position r = (x, y, z). The
Rabi frequency Ω(r) of the light field is then defined as

Ω(r) = −dge · ε(r)E0(r)
�

· (6)

The general expression for the light force (in the electric
dipole and rotating-wave approximations) can be writ-
ten as [15]

〈F〉 = F(r) = −�ust∇Ω(r) − �Ω(r)vst∇Φ(r). (7)

The two parts on the right-hand side of equation (7) are
the dipole force, proportional to the gradient of the Rabi
frequency Ω(r), and the scattering force, proportional to
the gradient of the phase Φ(r) of the light field. The Bloch
vector components u(t) and v(t) are replaced by their
time-independent steady-state values ust and vst respec-
tively. This is valid in the adiabatic approximation, where
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the atom moves slowly enough in the light field to main-
tain an equilibrium between its internal state and the ra-
diation field.

The steady-state values can be found by solving the
equations of motion of the optical Bloch vector that de-
scribe the time evolution of a two-level atom in a light
field

 u̇

v̇
ẇ


 =


 −Γ/2 ∆ + Φ̇ 0

−(∆ + Φ̇) −Γ/2 −Ω
0 Ω −Γ





 u

v
w


 −


 0

0
Γ/2


 ,

(8)
where Γ/2π is the natural linewidth of the excited state
and ∆/2π is the detuning between the light field fre-
quency ω and the frequency of the atomic transition.

The electric field component of a standing-wave light
field, composed of an incident and back-reflected Gaussian
wave travelling in the x-direction, can be written as

E(r, t) = ε E0 cos (ωt) sin (kx) exp
(
− y2

w2
y

− z2

w2
z

)
, (9)

where k is the wave number of the light and wy and wz

are the waists of the Gaussian beam profile in the y
and z-direction respectively. Since this electric field has
no phase dependence, the phase gradient term in equa-
tion (7) vanishes. The general solution of the light force
in a standing-wave light field then becomes

Fsw(r) = −�ust∇Ω(r). (10)

The steady-state value of the optical Bloch vector com-
ponent ust can be derived using two different approaches;
one that neglects the atomic velocity (Sect. 2.2), and one
that is valid for arbitrary atomic velocities (Sect. 2.3).

2.2 Atom at rest – potential model

When the transverse velocity of the atom in a standing-
wave light field is negligible (k · v � Γ ), the atom travels
over a very small distance compared to the optical wave-
length λ during the relaxation time Γ−1 of the atom. The
optical Bloch equations given in equation (8) can then be
considered as a set of coupled linear differential equations
with time-independent coefficients. The steady-state solu-
tions are found analytically by setting u̇ = v̇ = ẇ = 0 and
they are given by

ust(r) =
∆

Ω(r)
s(r)

1 + s(r)
,

vst(r) =
Γ

2Ω(r)
s(r)

1 + s(r)
,

wst(r) = − 1
2(1 + s(r))

, (11)

where

s(r) =
2Ω2(r)

Γ 2 + 4∆2
(12)

is the saturation parameter. The final expression for the
dipole force acting on an atom at rest in a standing-wave
light field, can now be found by combining equation (10)
and equation (11)

Fpot(r) = −�∆
∇Ω2(r)

2Ω2(r) + Γ 2 + 4∆2
· (13)

This force is conservative and it can be written as the
gradient of a potential [15,16]

Fpot(r) = −∇U(r) = −∇�∆

2
ln [1 + s(r)]. (14)

Equation (14) is a well-known expression for the dipole
force and it is commonly used for semi-classical cal-
culations of atomic motion in a standing-wave light
field [1,2,9]. Since this force is conservative, the kinetic
energy of the atom at any moment is determined by the
local potential of the light field.

2.3 Moving atom – Minogin model

When an atom moves with velocity v �= 0 in the standing-
wave light field, the position of the atom r becomes ex-
plicitly time dependent as r(t) = vt. However, the time
dependence of the transverse coordinates y and z can be
neglected, since the wavelength of the light λ is much
smaller than the waist of the Gaussian beam profile. This
means that the optical Bloch vector components u, v,
and w change more rapidly along the axis of the light field
(x-direction) than in the transverse directions y and z.
Therefore, for finding the steady-state solution of the op-
tical Bloch vector components, only the time dependence
of the x-coordinate has to be taken into account. The Rabi
frequency Ω(r) can then be written as a periodic function
of time

Ω(r, t) = Ω0(y, z) sin(kx)
= Ω0(y, z) sin(kvxt), (15)

where Ω0(y, z) is the peak Rabi frequency at the anti-
nodes of the standing wave, and vx is the velocity of the
atom parallel to the axis of the light field. With the Rabi
frequency given by equation (15), the coefficients of the
coupled linear differential equations in equation (8) be-
come time dependent. Consequently, the optical Bloch
equations can no longer be solved analytically. However,
a steady-state solution of u, v and w can be found by
expanding each of them in a Fourier series

h(r) =
∞∑

n=−∞
hn(y, z) einkx, (16)

where the common notation h is used for u, v, and w, and
the quantities hn satisfy the reality condition h−n = h∗

n.
By substituting the Fourier expansions (Eq. (16)) and the
expression for the Rabi frequency given by equation (15)
in the optical Bloch equations (Eq. (8)), a set of recursive
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algebraic equations is obtained for the optical Bloch vector
components [11]

(Γ/2 + inkvx)un = ∆vn,

(Γ/2 + inkvx)vn = −Ω0 (wn−1 + wn+1) − ∆un,

(Γ + inkvx)wn = Ω0 (vn−1 + vn+1) − Γ

2
δn0. (17)

The dipole force is now also represented in the form of
a Fourier series, where the Fourier coefficients can be
calculated from the optical Bloch vector components. The
expression for the dipole force can be separated into com-
ponents parallel and perpendicular to the axis of the
standing-wave light beam (x-direction) as

F‖(r) = F0
‖(r)

+
∞∑

n=1

(−1)n
(
F2n

‖u(r) cos 2nkx + F2n
‖v (r) sin 2nkx

)
, (18)

and

F⊥(r) = F0
⊥(r)

+
∞∑

n=1

(−1)n
(
F2n

⊥u(r) cos 2nkx + F2n
⊥v(r) sin 2nkx

)
, (19)

where the coefficients of the Fourier series are given by

F0
‖(r) = −2�kΩ0 Im u1,

F2n
‖u(r) = −2�kΩ0 Im (u2n+1 − u2n−1),

F2n
‖v (r) = −2�kΩ0 Re (u2n+1 − u2n−1), (20)

and

F0
⊥(r) = 4�

(
y

w2
y

+
z

w2
z

)
Ω0 Re u1,

F2n
⊥u(r) = 4�

(
y

w2
y

+
z

w2
z

)
Ω0 Re (u2n+1 + u2n−1),

F2n
⊥v(r) = −4�

(
y

w2
y

+
z

w2
z

)
Ω0 Im (u2n+1 + u2n−1).

(21)

The coefficients un are obtained from the solution of the
recursion relations (Eq. (17)) in the form of convergent
continued fractions. The dipole force given by equa-
tions (18, 19) is dissipative, and the atomic energy is there-
fore not conserved. The momentum change of the atom
can be attributed to an additional damping or heating
force, dependent on the intensity of the light field and on
the sign of its detuning from atomic resonance.

3 Numerical simulations

3.1 Calculation method

The dipole force derived from the two models de-
scribed in Sections 2.2 and 2.3 is used to calculate the

atomic movement through a standing-wave light field. By
straightforward numerical integration of the Newtonian
equations of motion, the change of the atomic velocity and
position under influence of the dipole force at the current
position of the atom in the light field is calculated. In this
way a full 3D simulation of the atom trajectories and ve-
locities in the standing-wave light field is performed. The
atomic pattern formation is mapped with 2D atomic dis-
tribution plots in the xy-plane and in histograms.

The calculation of the coefficients un, required for the
calculation of the dipole force in the Minogin model, is
described in detail by Minogin and Letokhov [17] and
it is summarized for completeness in the appendix. The
solutions for the coefficients are found in the form of
convergent continued fractions. For the simulations, these
continued fractions are calculated with an accuracy bet-
ter than 10−16, which requires a maximum of 5000 terms.
This precision is necessary to calculate the coefficients un

with an accuracy better than 1 ppm. The Fourier series
that represent the expression for the dipole force contain
at most 2500 Fourier coefficients. A convergence analy-
sis has shown that the dipole force change is negligible
at higher accuracies of the coefficients un and when more
terms are added to the Fourier series. Therefore the level
of convergence is assumed to be sufficient.

3.2 Parameters

The calculations are performed on a beam of helium atoms
in the 2 3S1 metastable state, which has a lifetime of
about 8000 s. The atomic beam has a mean longitudinal
velocity of 2000 m/s and a longitudinal velocity spread
(full width at 1/e2 height) of 650 m/s. After collimation
of the beam, the transverse velocity spread of the atoms is
reduced to about 3 m/s. For the calculations, each atom
is assigned a longitudinal and transverse initial velocity
that is randomly picked from Gaussian velocity distribu-
tions with the above described averages and spreads.

The light of the standing wave has a wavelength
of 1083 nm, driving the 2 3S1 → 2 3P2 optical transition
of the helium atom, which has a natural linewidth Γ/2π =
1.6 MHz. By detuning the light field relatively far to the
blue side of the atomic resonance (∆/2π = 375 MHz),
the atoms are attracted to the nodes of the standing-wave
light field, which reduces spontaneous emissions. An up-
per limit for the detuning forms the 2 3P1 state, which
energy level lies 2.3 GHz above the 2 3P2 state. For very
large blue detunings of the light field from the 2 3P2 state,
the atom can thus interact with the light field via the
2 3S1 → 2 3P1 transition.

The Rabi frequency can be calculated from the inten-
sity of the light field as

Ω(r) = Γ

√
I(r)
2Isat

, (22)

where Isat = 0.17 mW/cm2 is the saturation intensity of
the optical transition and I(r) is the intensity profile of
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Fig. 1. Velocity dependence of the x-component of the dipole force of a standing-wave light field in the focusing regime (left)
and the channelling regime (right) at position (x, y, z) = (3λ/8, 0, 0) in the standing wave and at a detuning of ∆/2π = 375 MHz.
The dipole force according the Minogin model (solid lines) is normalized to the dipole force from the potential model (dashed
lines).

the standing-wave light field, given by

I(r) = I0 sin2 (kx) exp
(
−2y2

w2
y

− 2z2

w2
z

)
· (23)

The Gaussian light beam has a circular beam profile with
a waist (1/e2 radius) wy = wz = 331 µm. The quantity I0

is the intensity of the light field at the anti-nodes of the
standing wave and it is given by

I0 =
8P0

πwywz
, (24)

where P0 is the power of the incident light beam. Depend-
ing on this power, two different regimes can be distin-
guished for guiding the atoms through the standing-wave
light field. At low power, the atoms can be focused at
the centre of the Gaussian light beam. For large detun-
ings (∆ � Γ ), the power required for this focusing can be
calculated from [9]

P0 = 5.37
πmv2∆Isat

2�Γ 2k2
· (25)

This focusing power is independent of the waist of the light
beam. For the conditions mentioned above, P0 = 2.4 mW.
For high-power light fields, the atoms oscillate through a
potential minimum of the standing wave and the sign of
the transverse velocity of the atoms changes many times.
This is called the channelling regime. For calculations in
this regime a power P0 = 800 mW is used. The dipole
force in the channelling regime is then about one order of
magnitude larger than in the focusing regime.

3.3 The dipole force

The velocity dependence of the x-component of the dipole
force in the focusing and channelling regime for both

models is depicted in Figure 1. The graphs show that,
in the focusing regime (left graph), the difference be-
tween the dipole force according to the potential model
and the Minogin model is very small (at most 0.3%).
In the channelling regime (right graph), however, the
dipole force of the two models differs significantly. The
force shows a negative slope for small transverse veloc-
ities (|kvx/Γ | < 0.2), which means that the force is a
damping force. This cooling effect is essentially the “blue-
detuned Sisyphus cooling” introduced by Dalibard and
Cohen-Tannoudji [18]. At larger velocities, the dipole force
in the Minogin model is significantly larger than in the
potential model. It is therefore expected that the distinc-
tion between the two models will be most pronounced in
the channelling regime. Furthermore, in the channelling
regime, the Minogin model shows some resonance peaks
at high atom velocities. These are called Doppler on res-
onances [19], and occur when the atom is excited to the
2 3P2 state by multiple photon absorptions and emissions.
When an atom absorbs (n + 1) photons from one wave of
the standing-wave light field, and emits n photons into the
other, these resonances appear at velocities

kvx/Γ = ± ∆

(2n + 1)Γ
· (26)

4 Results

Figure 2 shows a projection on the xz-plane of the atomic
motion through the standing-wave light field in the focus-
ing regime (upper graphs) and channelling regime (lower
graphs). The centre of the Gaussian light beam, which
propagates in the x-direction, is located at z = 0. The
graphs cover half a wavelength (λ/2 = 542 nm) of the
standing-wave light field, showing exactly one potential
minimum through which the atoms travel in the positive
z-direction (from left to right). To allow the atoms to ex-
perience a maximum dipole force, the starting y-position
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Fig. 2. Atom trajectories through the standing-wave light field in the focusing regime (upper graphs) and the channelling
regime (lower graphs). Semi-classical calculations are performed with the potential model (left) and the Minogin model (centre).
The right graphs show atomic density distributions of Monte Carlo wave function (MCWF) simulations.

is y = 0 for all atoms. However, since the simulations
are 3D and the atoms have an initial velocity in the y-
direction, this position is not maintained while travelling
through the light field.

Since the velocity dependence of the dipole force in
the focusing regime is almost negligible (see Fig. 1), the
atomic motion in this regime according to the potential
model (upper left graph) is very similar to the calcula-
tion with the Minogin model (upper centre graph). In
the channelling regime, the calculated trajectories differ
considerably for the potential model (lower left graph)
and the Minogin model (lower centre graph), due to the
higher average value and the strong velocity dependence
of the dipole force in the latter model (see Fig. 1). The
potential model is invalid in this regime, since the atoms
have a transverse velocity spread of 3 m/s (kvx/Γ = 1.7),
and the transverse velocity of the atoms can even be-
come on the order of 10 m/s in the standing wave. In
the channelling graph of Figure 2, the additional damping
force results in an increased confinement of the atoms in
the potential well of the standing wave. The upper right
and lower right graphs of Figure 2 show one-dimensional
MCWF calculations for the focusing regime and chan-
nelling regime respectively. In these calculations atomic
diffraction, velocity dependence and momentum diffusion
are fully incorporated. The plots show the atomic den-
sity distribution on a grey-scale for 225 quantum trajec-
tories, corresponding to the same initial distribution as
used for the semi-classical simulations. The characteris-
tic feather-like structures in the channelling regime (lower
right graph) do not constitute a specific quantum feature.
They correspond to (approximate) caustics in the semi-
classical trajectories and they become clearly visible if a
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Fig. 3. Distribution plots of the positions where the atoms
hit the sample after travelling through the standing-wave light
field at sample position z = wz/4 = 83 µm. From left to right,
the first two graphs show plots of the focusing regime using the
potential model (first graph) and the Minogin model (second
graph). The last two graphs show the channelling regime us-
ing the potential model (third graph) and the Minogin model
(fourth graph).

larger number of trajectories is plotted in the same way
as in the lower centre graph.

Distribution plots of the atoms are shown in Figure 3.
Every dot in these graphs represents a position where
the atom has hit the sample after travelling through the
standing-wave light field. The calculations are performed
on atoms in a lattice of 101× 101 atoms. The starting po-
sitions of the atoms range from (x, y) = (−λ/2,−2wy) to
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Fig. 4. Histograms of the atom distributions taken at z = wz/4 = 83 µm. The upper graphs show the distributions for
the focusing regime in the potential model (left), Minogin model (centre), and the MCWF simulations (right). Similarly, the
channelling regime is represented by the lower graphs.

(x, y) = (λ/2, 2wy). The plots only show half of this win-
dow in the x-direction, from x = −λ/4 to x = λ/4. In the
focusing regime, the light-field does not act as a perfect
lens, but shows some abberations. This imperfection is en-
hanced by the longitudinal and transverse velocity spread
of the atoms. As a result, the best position to place the
sample is not at the centre of the light beam (z = 0), but
slightly behind it. For the channelling regime, the sam-
ple position is far less critical, but the best results are
at similar positions. Therefore, the comparison of the two
regimes for the different models in Figure 3 is performed
at z = wz/4 = 83 µm, where optimal results are expected.

The first two plots show the atom distributions in the
focusing regime for the potential model (first plot) and
the Minogin model (second plot). As expected from the
comparison of the trajectories in this regime, shown in
the upper graphs of Figure 2, the differences between the
two models are negligible. The distributions in the chan-
nelling regime with the potential model (third plot) and
the Minogin model (fourth plot) show that the atoms are
confined for a wider range along the y-axis as compared to
the focusing regime. Furthermore, for the Minogin model,
the atoms are more localized to the nodes of the standing
wave.

To make a more quantitative comparison of the four
plots of Figure 3, histograms of the atom distributions
are presented in Figure 4. Only the atoms located be-
tween y = −100 µm and y = 100 µm are taken into
account for the histograms, because atoms outside this
region do not contribute to the desired pattern (in the fo-
cusing regime). The black curves through the histograms
are Lorentzian fits from which the full width at half max-
imum (FWHM) of the distribution can be deduced. The

upper graphs, that represent the calculations in the fo-
cusing regime, show that the FWHM of the distribution
is 150 nm for both semi-classical models as well as for the
quantum-mechanical model. For the calculations in the
channelling regime (lower graphs), the distribution of the
potential model (left graph) has a FWHM of 98 nm. This
width deviates clearly from the distribution of the Minogin
model (centre graph), which has a FWHM of 40 nm. The
smaller width of this distribution can be explained from
the additional cooling force that is included in the Minogin
model. The distributions for the full quantum-mechanical
calculations are shown in the right graphs. The FWHM
of the central peak is 45 nm, somewhat larger than the
results from the continued fraction semi-classical results.
This larger width is mostly due to the fact that the steady-
state situation for the atoms is not completely realized
during the interaction time. Achieving a steady state re-
quires a number of spontaneous emissions per atom. Due
to the large detuning of the light field from atomic reso-
nance, and due to the fact that the atoms are channelled
in the region of low light intensity, almost one half of the
atoms never undergoes a spontaneous emission. The influ-
ence of diffusion is seen in the wings of the MCWF dis-
tributions. However, overall the MCWF results agree very
well with the semi-classical calculations using the Minogin
model, confirming the large reduction in the FWHM of the
distribution due to the cooling force.

5 Conclusions

The simulations have shown that nanoscale patterns can
be created utilizing the optical dipole force to guide atoms
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through a standing-wave light field. For the calculation
of the atomic motion, two models have been applied: a
simple one that uses the conventional dipole force, de-
rived from a potential, and another one that includes the
velocity dependence of this dipole force. In the “conven-
tional” focusing regime, where a low-power light field is
used, the differences between the potential model and
the Minogin model are negligible. Both models show that
in principle nanoscale pattern sizes of 150 nm can be
achieved with the specified experimental parameters. It
should be noted, that these parameters are not optimized
for focusing: using a smaller laser focus and more laser
power, much tighter focusing can be achieved without en-
tering the channelling regime. However, the sample posi-
tion is very critical, and good focusing is only achieved
for atoms that pass the light field close to its centre.
The high-power channelling regime, that we are presently
using for nanostructure production with metastable he-
lium atoms, is more robust. It is therefore better suitable
for creating narrow patterns. In this regime, the Minogin
model shows strong deviations from the potential model,
due to the contribution of velocity dependent terms to
the dipole force. Because of the large transverse veloc-
ity (kvx > Γ ) of the atoms in the standing-wave light
field, the potential model breaks down and should not
be applied for calculations in this regime. The results of
the calculations with the Minogin model show structures
with a FWHM of 40 nm. This model does not take into ac-
count the momentum diffusion and transient effects, which
leads to broadening of the structure size, as is shown by
the MCWF simulations. However, the MCWF simulations
support the results of the Minogin model by showing a bet-
ter confinement of the atoms in the standing-wave light
field than expected from calculations with the conven-
tional model. This is due to an additional cooling force
that is not incorporated in the conventional model.
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Appendix A: Continued fraction method

The determination of the dipole force in the Minogin mod-
el, given by equations (18, 19), requires the optical Bloch
vector components un, that are embedded in the expres-
sions of the Fourier coefficients in equations (20, 21). The
coefficients un can be calculated with a continued frac-
tion method according to Minogin and Letokhov [17]. A
summary of this method is described below.

The upper expression of equation (17) can be rewritten
in the form

un =
∆

Γ/2 + inkvx
vn. (27)

Since vn is non-zero for odd n, and wn is non-zero for
even n, the middle and lower expressions of equation (17)

can be combined to a single expression as

bn − Dn(bn−1 + bn+1) = −δn0/2, (28)

where

bn =

{
vn for odd n,

wn for even n,
(29)

and the coefficients Dn are given by

Dn =




− Ω (Γ/2 + inkvx)
(Γ/2 + inkvx)2 + ∆2 for odd n,

Ω
Γ + inkvx

for even n.
(30)

The coefficients bn fulfil the reality condition

b−n = b∗n, (31)

and therefore only non-negative integers (n ≥ 0) have to
be considered. The relation between two successive quan-
tities bn and bn+1 can then be found by substituting

bn+1 = qnbn (32)

into equation (28). This leads to a recursion relation for qn

given by

qn =
1

Dn
− 1

qn−1
· (33)

The quantity q0 can now be expressed as a convergent
continued fraction

q0 =
D1

1 +
p1

1 +
p2

1 +
p3

1 + . . .

, (34)

where
pn = −DnDn+1. (35)

The quantity b0 = w0 is found by solving equation (28)
for n = 0 and gives

b0 =
1

(4Ω/Γ )Re(q0) − 2
· (36)

From equation (32) and this initial coefficient b0, all suc-
cessive coefficients bn can be calculated. By substituting
the coefficients bn (= vn for odd n) into equation (27), the
coefficients un can be found straightforwardly.
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